Lớp 7Toán Học

Cách tìm nghiệm của đa thức bậc 4

I. Phương trình bậc bốn dạng ax4 + bx3 + cx2 + bkx + ak2 = 0

[CHUẨN NHẤT] Cách tìm nghiệm của đa thức bậc 4

Nhận xét: Mỗi cách giải có ưu điểm riêng, với cách giải 1, ta sẽ tính được trực tiếp mà không phải thông qua ẩn phụ, với cách giải 2, ta sẽ có những tính toán đơn giản hơn và ít bị nhầm lẫn.

II.Phương trình bậc bốn dạng (x + a)(x + b)(x + c)(x + d) = ex2 với ad = bc = m

[CHUẨN NHẤT] Cách tìm nghiệm của đa thức bậc 4 (ảnh 2)

III. Phương trình bậc bốn dạng (x + a)(x + b)(x + c)(x + d) = m với a+ b = c + d = p

[CHUẨN NHẤT] Cách tìm nghiệm của đa thức bậc 4 (ảnh 3)

Ví dụ 3. Giải phương trình : x(x + 1)(x + 2)(x + 3) = 8

[CHUẨN NHẤT] Cách tìm nghiệm của đa thức bậc 4 (ảnh 4)

IV. Phương trình bậc bốn dạng (x + a)4 + (x + b)4 = c với (c<0)

[CHUẨN NHẤT] Cách tìm nghiệm của đa thức bậc 4 (ảnh 5)

V. Phương trình bậc bốn dạng x4 = ax2 + bx + c

[CHUẨN NHẤT] Cách tìm nghiệm của đa thức bậc 4 (ảnh 6)

VI. Phương trình bậc bốn dạng af2(x) + bf(x)g(x) + cg2(x) = 0

[CHUẨN NHẤT] Cách tìm nghiệm của đa thức bậc 4 (ảnh 7)

VII. Phương trình bậc bốn tổng quát ax4 + bx3 + cx2 + dx + e = 0

[CHUẨN NHẤT] Cách tìm nghiệm của đa thức bậc 4 (ảnh 6)

Ví dụ bài tập

Bạn đang xem: Cách tìm nghiệm của đa thức bậc 4

Ví dụ 1: Giải phương trình : x4 – 4x2 + 12x – 9 = 0 (1) .

Giải:

[CHUẨN NHẤT] Cách tìm nghiệm của đa thức bậc 4 (ảnh 9)

Nhận xét: Mẫu chốt của cách giải trên là chúng ta nhận ra hằng đẳng thức và biến đổi về phương trình (1.1). Trong nhiều phương trình việc làm xuất hiện hằng đẳng thức không còn dễ dàng như vậy nữa, để làm điều này đòi hỏi chúng ta phải có những nhạy cảm nhất định và phải thêm bớt những hạng tử thích hợp.

 Ví dụ 2: Giải phương trình : x4 – 13x2 + 18x – 5 = 0

Giải: 

Phương trình 

[CHUẨN NHẤT] Cách tìm nghiệm của đa thức bậc 4 (ảnh 10)
[CHUẨN NHẤT] Cách tìm nghiệm của đa thức bậc 4 (ảnh 11)

Đây là phương trình bậc ba nên bao giờ cũng có ít nhất một nghiệm. Khi đó ta sẽ đưa phương trình (1.I) về phương trình tích của hai tam thức bậc hai, từ đây ta giải hai tam thức này ta được nghiệm phương trình (I).

2) Về mặt lí thuyết thì ta có thể giải được mọi phương trình bậc bốn theo cách trên. Tuy nhiên trên thực tế thì nhiều lúc việc giải không được dễ dàng vậy, vì mẫu chốt quan trọng nhất của cách giải trên là tìm . Mặc dù (2.I) đã có cách giải nhưng không phải giá trị  lúc nào cũng “đẹp”, nên sẽ khó khăn cho các phép biến đổi của chúng ta.

Ví dụ 3: Giải phương trình:  2x4 – 10x3 + 11x2 + x – 1 = 0 (4).

Giải: 

Ta có phương trình:

[CHUẨN NHẤT] Cách tìm nghiệm của đa thức bậc 4 (ảnh 12)

Ví dụ 4:

[CHUẨN NHẤT] Cách tìm nghiệm của đa thức bậc 4 (ảnh 13)

Ví dụ 5: Giải phương trình : .5x6 – 16x4 – 33x3 – 40x2 + 8 = 0

Giải:

Ví dụ 7: Tìm m để phương trình x4 – x2 + 2mx – m2 = 0  có bốn nghiệm phân biệt.

 Giải:

[CHUẨN NHẤT] Cách tìm nghiệm của đa thức bậc 4 (ảnh 15)

Đăng bởi: Đại Học Đông Đô

Chuyên mục: Lớp 7, Toán lớp 7

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button