Lớp 7Toán Học

Chứng minh rằng trong một tứ giác tổng hai đường chéo lớn hơn tổng hai cạnh đối

Câu hỏi: Chứng minh rằng trong một tứ giác tổng hai đường chéo lớn hơn tổng hai cạnh đối

Lời giải:

Gọi O là giao điểm của hai đường chéo AC và BD.

Bạn đang xem: Chứng minh rằng trong một tứ giác tổng hai đường chéo lớn hơn tổng hai cạnh đối

Trong  ∆OAB, ta có:                                                                  

OA + OB > AB (bất đẳng thức tam giác) (1)  

Trong ∆OCD, ta có:

OC + OD > CD (bất đẳng thức tam giác) (2)

Cộng từng vế (1) và (2):

OA + OB + OC + OD > AB + CD

⇒ AC + BD > AB + CD

Cùng THPT Đông Đô tìm hiểu về tứ giác nhé.

1. Định nghĩa tứ giác

Tứ giác ABCD là hình gồm bốn đoạn thẳng AB, BC, CD, DA trong đó bất kì đoạn thẳng nào cũng không cùng nằm trên một đường thẳng. 

Chứng minh rằng trong một tứ giác tổng hai đường chéo lớn hơn tổng hai cạnh đối (ảnh 2)

2. Tứ giác lồi

Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng mà bờ là đường thẳng chứa bất kì cạnh nào của tứ giác.

Ví dụ: Tứ giác ABCD ở hình trên là tứ giác lồi.

3. Tổng các góc của một tứ giác

– Định lí: Tổng các góc của một tứ giác bằng 360o

Ví dụ: Tứ giác ABCD có ∠A + ∠B + ∠C + ∠D=360o

– Tính chất : Tính chất góc của hình tứ giác

Tổng các góc của tứ giác bằng 360 độ.

4. Cách nhận biết các hình tứ giác

Có 4 dạng tứ giác thường gặp đó là:

Dạng 1: Tứ giác đơn.

Tứ giác đơn là bất kỳ tứ giác nào không có cạnh nào cắt nhau.

Dạng 2: Tứ giác lồi

Tứ giác lồi là tứ giác mà tất cả các góc trong nó đều nhỏ hơn 180° và hai đường chéo đều nằm bên trong tứ giác. Hay dễ hiểu hơn thì tứ giác lồi là tứ giác luôn nằm gọn trong một nửa mặt phẳng có chứa bất kỳ cạnh nào.

Dạng 3: Tứ giác lõm.

Tứ giác lõm là tứ giác chứa một góc trong có số đo lớn hơn 180° và một trong hai đường chéo nằm bên ngoài tứ giác.

Dạng 4: Tứ giác không đều.

Tứ giác không đều là tứ giác mà nó không có cặp cạnh nào song song với nhau. Tứ giác không đều thường được dùng để đại diện cho tứ giác lồi nói chung (không phải là tứ giác đặc biệt).

Không chỉ có 4 dạng tứ giác thường gặp trên mà trong hình tứ giác còn có cả những dạng đặc biệt của hình tứ giác như các hình sau đây.

5. Hình tứ giác đặc biệt

Dạng 1: Hình thang.

Hình thang là hình tứ giác có ít nhất 2 cạnh đối song song.

Chứng minh rằng trong một tứ giác tổng hai đường chéo lớn hơn tổng hai cạnh đối (ảnh 3)

Dạng 2: Hình thang cân.

Không chỉ hình thang là dạng đặc biệt của tứ giác mà hình thang cân cũng là 1 trong số dạng tứ giác đặc biệt.

Hình thang cân là hình thang có 2 góc kề cùng một cạnh đáy bằng nhau. Hoặc là hình thang với 2 đường chéo bằng nhau.

Chứng minh rằng trong một tứ giác tổng hai đường chéo lớn hơn tổng hai cạnh đối (ảnh 4)

Dạng 3: Hình bình hành.

Hình bình hành là hình tứ giác có 2 cặp cạnh đối song song. Trong hình bình hành thì các cạnh đối bằng nhau, các góc đối bằng nhau, đường chéo cắt nhau tại trung điểm mỗi đường. Hình bình hành là trường hợp đặc biệt của hình thang.

Dạng 4: Hình thoi.

Hình thoi cũng là 1 dạng đặc biệt của hình tứ giác bởi vì hình thoi là hình tứ giác có 4 cạnh bằng nhau.

Chứng minh rằng trong một tứ giác tổng hai đường chéo lớn hơn tổng hai cạnh đối (ảnh 6)

Dạng 5: Hình chữ nhật.

Hình chữ nhật là 1 dạng đặc biệt của hình tứ giác vì hình chữ nhật là hình tứ giác có 4 góc vuông, một điều kiện tương đương là 2 đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường.

Chứng minh rằng trong một tứ giác tổng hai đường chéo lớn hơn tổng hai cạnh đối (ảnh 7)

Dạng 6: Hình vuông.

Nhắc tới những dạng đặc biệt của tứ giác chúng ta không thể nào không kể đến hình vuông vì hình vuông là một tứ giác có 4 góc vuông và 4 cạnh bằng nhau. Hình vuông có các cạnh đối song song, các đường chéo bằng nhau và vuông góc tại trung điểm. Một tứ giác là một hình vuông nếu và chỉ nếu nó vừa là một hình thoi vừa là một hình chữ nhật (bốn cạnh bằng nhau và bốn góc bằng nhau).

Chứng minh rằng trong một tứ giác tổng hai đường chéo lớn hơn tổng hai cạnh đối (ảnh 7)

Dạng 7: Tứ giác nội tiếp.

Đây là dạng cuối cùng của những dạng tứ giác đặc biệt của hình tứ giác. Vì tứ giác nội tiếp là một tứ giác mà cả 4 đỉnh đều nằm trên một đường tròn.

Đường tròn này được gọi là đường tròn ngoại tiếp, và các đỉnh của tứ giác được gọi là đồng viên. Tâm đường tròn và bán kính lần lượt được gọi là tâm đường tròn ngoại tiếp và bán kính ngoại tiếp.

Thông thường tứ giác nội tiếp là tứ giác lồi, nhưng cũng tồn tại các tứ giác nội tiếp lõm. Các công thức trong bài viết sẽ chỉ áp dụng cho tứ giác lồi.

Đăng bởi: Đại Học Đông Đô

Chuyên mục: Lớp 7, Toán lớp 7

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button